metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Milan Erben,^a* Ivana Císařová,^b Jaromír Vinklárek^a and Michal Picka^a

^aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legif 565, Pardubice 532 10, Czech Republic, and ^bDepartment of Inorganic Chemistry, Charles University, Hlavova 2030, Prague 128 40, Czech Republic

Correspondence e-mail: milan.erben@upce.cz

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.004 Å R factor = 0.027 wR factor = 0.065 Data-to-parameter ratio = 19.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Dibromo(η^5 , η^5 -propane-2,2-diyldicyclopentadienyl)zirconium(IV)

The title compound, $[ZrBr_2(C_{13}H_{24})]$, contains a pseudotetrahedral Zr^{IV} centre involving two η^5 -bonded cyclopentadienyl rings [Zr-Cg = 2.1843 (12) Å; Cg is the centroid of a cyclopentadienyl ring] and two Br atoms [Zr-Br = 2.5828 (5)and 2.5879 (6) Å]. The angle Cg1-Zr-Cg2 is constrained to a value of 116.80 (5)° due to the presence of a short interannular 2,2-propylidene bridge. The Zr and Br atoms lie on a crystallographic mirror plane, which bisects the organic ligand.

Comment

Zirconocene complexes are broadly investigated as efficient olefin polymerization (Lee *et al.*, 2004) and co-polymerization catalysts (Jung *et al.*, 2005) or as very selective reagents in organic syntheses (Pool & Chirik, 2005). Both chemical and physical properties of these compounds can be easily modified by substitution at the cyclopentadienyl rings and many ringsubstituted zirconocenes have been described. Incorporation of an interannular bridge connecting both cyclopentadienyl ligands leads to a broad class of complexes known as ansametallocenes. As part of an investigation of the influence of ring substitution on the properties of cyclopentadienyl complexes, the title compound, (I), was prepared, characterized spectroscopically and its structure determined

Compound (I) crystallizes in the space group $P2_1/m$. The molecule adopts C_s symmetry, with atoms C6–C8, Br1, Br2 and Zr1 located on a mirror plane bisecting the molecule. The bond distance Cg-Zr1 [2.1843 (12) Å; Cg is the centroid of the cyclopentadienyl ring] is similar to the value of 2.1914 (11) Å found in the analogous dichloro derivative [ZrCl₂(C₁₃H₂₄)] (Koch et al., 2000). The Zr-Br distances [2.5828 (5) and 2.5879 (6) Å] are slightly shorter than those in dibromozirconocene, $[ZrBr_2(C_5H_5)_2]$ [2.610(3)]and 2.611 (3) Å]. The angle Cg1 - Zr1 - Cg2 [116.80 (5)°] is significantly smaller than that observed in dibromozirconocene [129.3 (3) Å; Buhl et al., 1996]. The most remarkable feature of the structure of (I) is the distortion of the bond angle C1-C6-C1 $(x, \frac{1}{2} - y, z)$ to a value of 99.7 (3)°. These structural features are presumably due to the steric effect relating to the presence of the 2,2-propylidene bridge between the Cp ligands.

Received 12 September 2005 Accepted 25 October 2005 Online 31 October 2005

Figure 1

Perspective view of (I), shown with 50% probability displacement ellipsoids. [Symmetry code: (a) $x, \frac{1}{2} - y, z$.]

When the structural parameters of (I) and its dichloro analogue (Koch *et al.*, 2000) are compared, it is clear that replacing chloride with bromide ligands does not significantly affect the structure of the $[Zr(C_{13}H_{24})]^{2+}$ unit.

Experimental

Complex (I) was prepared by the reaction of the dichloro analogue (Nifant'ev & Ivchenko, 1997) with boron tribromide in dichloromethane. $[ZrCl_2(C_{13}H_{24})]$ (240 mg, 0.72 mmol) was dissolved in dichloromethane (20 ml) and boron tribromide (0.05 ml, 0.53 mmol) was added via a septum. The reaction mixture was stirred for 2 h at 298 K and the solvent was evaporated in vacuo. The solid residue was washed with pentane, dried in a vacuum and subsequently sublimed at 10⁻³ Pa and 450-470 K, yielding 260 mg (86%) of (I). Crystallization from hot chloroform yielded green crystals of (I) suitable for X-ray diffraction measurements. ¹H NMR (CDCl₃): δ 6.83 (*m*, 4H), 5.75 (m, 4H), 1.77 (s, 6H); ¹³C NMR (CDCl₃): δ 123.2, 120.6, 106.9, 37.5, 23.9; IR (KBr disc, cm⁻¹): 3116 (m), 3081 (m), 1473 (s), 1457 (*m*), 1411 (*vs*), 1385 (*m*), 1371 (*m*), 1264 (*vs*), 1150 (*m*), 1079 (*s*), 1058 (m), 1043 (vs), 944 (m), 909 (m), 886 (m), 874 (vs), 868 (s), 835 (s), 819(vs), 801 (vs), 748 (vs), 714 (s), 607 (w), 546 (m), 451 (s), 401 (s), 332 (s); UV-Vis (CH₂Cl₂, maxima at nm): 397, 305, 235.

Crystal data

$[ZrBr_2(C_{13}H_{14})]$	$D_x = 2.107 \text{ Mg m}^{-3}$
$M_r = 421.28$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/m$	Cell parameters from 7302
a = 7.3360 (3) Å	reflections
b = 8.7470 (4) Å	$\theta = 1-27.5^{\circ}$
c = 10.3500 (3) Å	$\mu = 6.82 \text{ mm}^{-1}$
$\beta = 90.763 \ (2)^{\circ}$	T = 150 (2) K
$V = 664.08 (5) \text{ Å}^3$	Needle, green
Z = 2	$0.14 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Dulu collection	

Nonius KappaCCD area-detector
diffractometer
φ and ω scans
Absorption correction: Gaussian
(Coppens, 1970)
$T_{\rm min} = 0.398, T_{\rm max} = 0.759$
11528 measured reflections

1635 independent reflections 1421 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -13 \rightarrow 13$ Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0312P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 0.607P]
$vR(F^2) = 0.065$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
.635 reflections	$\Delta \rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3}$
32 parameters	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 Table 1

 Selected geometric parameters (Å, °)..

Zr1-Cg1	2.1843 (12)	Cg1-Zr1-Cg2	116.80 (5)
Zr1-Cg2	2.1843 (12)	Br1-Zr1-Br2	100.53 (2)
Zr1-Br1	2.5828 (5)	$C1 - C6 - C1^{i}$	99.7 (3)
Zr1-Br2	2.5879 (6)	C7-C6-C8	109.3 (4)
$P_{\rm r}1 - C1 - C6$	14.34 (19)	$P_{\rm r}1-Cg1-{\rm Zr}1$	86.11 (12)
$P_{\rm r}1 - P_{\rm r}2$	70.97 (17)		

Symmetry code: (i) $x, \frac{1}{2} - y, z$. Cg1 and Cg2 are the centroids of the C1–C5 and C1ⁱ–C5ⁱ cyclopentadienyl rings, respectively; P_r1 is the ring plane defined by atoms C1–C5; (c) P_r2 is the ring plane defined by atoms C1ⁱ–C5ⁱ.

All H atoms were positioned geometrically and refined riding on their parent C atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for cyclopentadienyl H atoms, and C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Data collection: *COLLECT* (Hooft, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of research project VZ 0021627501. Access to the Cambridge Structural Database was sponsored by the Grant Agency of the Czech Republic (No. 203/02/0436).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Buhl, M., Hopp, G., Philipsborn, W., Beck, S., Prosenc, M. H., Rief, U. & Brintzinger, H. H. (1996). Organometallics, 15, 778–785.
- Hooft, R. W. (1998). COLLECT. Nonius, Delft, The Netherlands.
- Jung, H. Y., Hong, S. D., Jung, M. W., Lee, H. & Park, Y. W. (2005). Polyhedron, 24, 1269–1273.
- Koch, T., Blaurock, S., Somoza, F. B. Jr, Voigt, A., Kirmse, R. & Hey-Hawkins, E. (2000). Organometallics, 19, 2556–2563.
- Lee, H., Hong, S. D., Park, Y. W., Jeong, B. G., Jung, D. W., Jung, M. W. & Song, K. H. (2004). J. Organomet. Chem. 689, 3402–3411.
- Nifant'ev, I. E. & Ivchenko, P. V. (1997). Organometallics, 16, 713–715.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pool, J. A. & Chirik, P. J. (2005). Can. J. Chem. 83, 286-295.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.